🧡🦁🦇🔥🫡 awesome brief by @iAnonymous3000 🔥🔥🔥
Model substitution in LLM APIs is a documented problem.
Research: "Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs"
Finding: Providers have financial incentives to silently swap expensive models for cheaper ones. Users have no way to verify what's actually running.
Brave just solved this with cryptographically verifiable AI.
The implementation: @brave Leo now uses @near_ai @nvidia Trusted Execution Environments for provable privacy and model transparency. This is hardware-enforced cryptographic guarantees.
THE ARCHITECTURE:
TEE-enabled Nvidia GPUs create hardware-isolated secure enclaves with full encryption of data and code during inference.
Cryptographic attestation reports contain model hashes and execution code hashes.
Remote attestation verifies genuine Nvidia TEE running unmodified open-source code.
THE GUARANTEES:
- Confidentiality: Even a fully compromised OS cannot access TEE memory (hardware isolation)
- Integrity: Cryptographic proof of exact model and code executing
- Verifiability: Open-source chain from code to hardware attestation
THE VERIFICATION CHAIN:
User selects model → @brave validates @near_ai cryptographic attestation → confirms @nvidia TEE hardware → proves DeepSeek V3.1 running unmodified → green ✅ badge displayed
This eliminates three critical problems:
(1) Privacy-washing: Math over marketing. Cryptographic proofs replace privacy policies.
(2) Model substitution: Hardware-enforced proof you're getting the model you selected/paid for.
(3) Trust requirements: Hardware guarantees replace legal agreements.
COMPARISON TO APPLE PRIVATE CLOUD COMPUTE:
Similar TEE approach, different philosophy:
- Apple: Closed ecosystem, proprietary verification, limited auditability
-Brave: Open-source code, user-verifiable attestations, full transparency
TECHNICAL IMPLICATIONS:
This shifts the security model from:
- Trust-based (policies, agreements, promises)
-> Verification-based (cryptography, hardware, math)
From software controls that can be bypassed to hardware enforcements that cannot.
The Nvidia Hopper architecture enables this with minimal performance overhead (benchmarks show near-zero in many cases). Combining CPU TEEs (@intel TDX) with GPU TEEs creates end-to-end confidential computing for LLM inference.
PRIVACY RESEARCH PERSPECTIVE:
This is the privacy-by-design architecture we should demand:
- Cryptographically verifiable (not just auditable)
- Hardware-enforced (not policy-enforced)
- Independently verifiable (not trust-us verification)
- Addresses real economic incentives (model substitution, data monetization)

656
1
Konten pada halaman ini disediakan oleh pihak ketiga. Kecuali dinyatakan lain, OKX bukanlah penulis artikel yang dikutip dan tidak mengklaim hak cipta atas materi tersebut. Konten ini disediakan hanya untuk tujuan informasi dan tidak mewakili pandangan OKX. Konten ini tidak dimaksudkan sebagai dukungan dalam bentuk apa pun dan tidak dapat dianggap sebagai nasihat investasi atau ajakan untuk membeli atau menjual aset digital. Sejauh AI generatif digunakan untuk menyediakan ringkasan atau informasi lainnya, konten yang dihasilkan AI mungkin tidak akurat atau tidak konsisten. Silakan baca artikel yang terkait untuk informasi lebih lanjut. OKX tidak bertanggung jawab atas konten yang dihosting di situs pihak ketiga. Kepemilikan aset digital, termasuk stablecoin dan NFT, melibatkan risiko tinggi dan dapat berfluktuasi secara signifikan. Anda perlu mempertimbangkan dengan hati-hati apakah trading atau menyimpan aset digital sesuai untuk Anda dengan mempertimbangkan kondisi keuangan Anda.


